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Abstract. Fluctuations in dynamical systems may give rise naturally to stochastic maps 
which, in the absence of fluctuations, reduce to maps similar to those considered by 
Shilnikov. Noise appears in a highly non-trivial manner. The effect of the noise on the 
chaotic dynamics is studied. It is shown that the different noise terms can give rise to 
radically different behaviour. 

1. Introduction 

Dynamical systems have recently been much studied numerically [ 13 and  chaotic 
behaviour has been found. In parallel there has been a great deal of progress in 
understanding the phenomena in geometrical terms [2]. Particularly influential has 
been the ‘horseshoe’ construction of Smale [3] in which a unit square is stretched, 
bent and contracted into a horseshoe, and the curved part of the horseshoe lies outside 
the square. The invariant set under such a mapping has a Cantor-like structure both 
horizontally and vertically. Chaotic attractors possess such invariant sets, which start 
growing before the actual threshold for chaos. Such horseshoes naturally arise when 
there are transverse homoclinic orbits [2]. Shilnikov [4] and others [5] have shown 
this for certain three-dimensional flows. In particular, if there is a homoclinic trajectory 
to a saddle point with complex eigenvalues where the real eigenvalue has a larger 
magnitude than the real part of the complex eigenvalues then there are horseshoes 
present in return maps defined near the homoclinic orbit. Also there is a similar result 
when the system of three-dimensional differential equations has a Lorenz-type sym- 
metry and  the saddle point has real eigenvalues which satisfy - A 2 >  A ,  > -A ,>  0. (If 
the phase space variables are X , ,  X 2  and X 3  then the Lorenz symmetry requires the 
evolution equations to be invariant under XI + - X I ,  X 2  -+ - X z  and X 3  + X 3  .) The 
behaviour of dynamical systems under stochastic perturbations [6,7] is a growing area 
of interest, since noise is always present in physical systems. Moreover from general 
theorems [8] we expect that dissipation in systems is accompanied by fluctuations. In 
this paper we will construct return maps in the spirit of Shilnikov for some stochastic 
dynamical systems. Just as the return maps are valuable for the deterministic system 
in understanding strange invariant sets, we hope that the stochastic versions of these 
maps will play a role in the understanding of possible noise-induced behaviour. Once 
we have obtained the maps we will also ‘analytically continue’ them to parameter 
regimes outside the scope of the Shilnikov construction. The two types of saddle points 
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mentioned earlier will be primarily considered. A limited amount of work on maps 
with noise has already been done. The procedure has usually been somewhat ad hoc. 
Typically a simple additive noise term is appended to a standard map such as the 
logistic map. This is not an unreasonable procedure and both analytic and numerical 
results have been obtained for exponents describing the scaling of Lyapounov 
exponents with noise [9]. However, since maps usually emerge in physical systems 
through the use of PoincarC sections on dynamical systems, and the Shilnikov construc- 
tion is a rather natural example of one, it seems interesting to use it to obtain stochastic 
maps, the stochasticity having been introduced directly into the ordinary differential 
equations defining the dynamical system. The maps that we obtain are very different 
from the ones usually studied. The noise appears embedded in the maps in a quite 
unexpected way. If these maps had been written down without explanation they might 
well have appeared bizarre. However, they are implied by Shilnikov type constructions 
which appeal to rather general properties of the underlying systems (such as the relative 
magnitudes of the eigenvalues at the saddle point) and so should not be too special. 
We will indeed find quite a rich variety of behaviour, some of which encompasses the 
phenomena found in earlier work [9]. The universality classes of behaviour found in 
the presence of noise are thus likely to be diverse. 

Once we deal with stochastic maps it is necessary to use probabilistic concepts. 
The attractor will be the support of the probability distribution for the system. We 
are interested in ensemble or time averages of quantities (since ergodicity is found to 
hold). Among the more useful quantities are Lyapounov exponents and dimensions 
[lo] and fractal (or clustering) dimensions [ l l ] .  In the next section we will describe 
the two stochastic Shilnikov maps that we will study. In the last section they will be 
analysed using the quantities mentioned above. 

2. The Shilnikov construction 

Without loss of generality the saddle point in the dynamical system can be taken to 
be at the origin. For the usual Shilnikov case the stochastic dynamical system near 
the saddle point is taken to be 

where ti are independent Gaussian white noises 

( t i ( t ) 5 , ( t ' ) )  = t ' )  i, j = 1 , 2 , 3  (2) 
and x, y and z are real variables. 

are small noise strengths. We take a small cylinder of radius 
r, around the origin shown in figure 1. The behaviour of the z variable in (1) decouples 
from that of x and y and is described by z (  t )  which is an Omstein-Uhlenbeck process 
[12]. If the in (1) were functions of x, y and z with Taylor expansions around the 
origin, then the dominant contributions would come from the constant terms in the 
expansions. Higher-order contributions are very small since they depend on poly- 
nomials in x, y and z which are small near the origin. The solution for z ( t )  is 

Here A > -a > 0; 

z (  t )  = z(0) eA' + E~ e'' (3) 
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Figure 1. The cylinder used in the Shilnikov construction. 

We define 

CA( t )  = dt’ e-A“&( t’). id 
@,, is Gaussian with 

( @A ( t )) = 0 

and 

with 

e(x) = 1 x > o  
1 

- 2  x = o  - _  

= O  x<o.  

(4) 

( 7 )  

If we consider a point initially in AI then depending on z(0) and the effect of the 
random forces it will reach A2.  The time t’ at which this happens is given by 

Since z(0) and e3 are very small we expect At‘ to be large almost always and can take 

(( WA(t ’ ) )2 )=  1/2A. (9) 
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Then we have 

where i3 is a white noise (with zero mean and unit variance). 
It is easy to see that the variables x and y satisfy 

x +iy = ( (Y + ip ) (x  + iy) + ~~5~ + i ~ ~ & .  
Consequently 

x(  t )  = e"'(x(0) cos pt -y (O)  sin P t )  

+lo' cis exp~cu(r -s ) l [E ,~ l (s )  cos p ( t  -s)-.5252(s) sin p ( t - s ) l  (12) 

and 

y (  t )  = e"'(y(0) cos pt +x(O) sin p t )  

+ lo' exp[a ( t  - s)][sin p (  t - s).sl&( s) + cos p (  t - s).s2&(s)] ds. (13) 

It can then be shown that 

where 

X(O) = ro COS e 
y ( 0 )  = rosin 6 

E, and & are independent Gaussian white noises of zero mean and unit variance and 
E ;  and E ;  are constants proportional to E ,  and E ~ .  Equations (14) and (15) define a 
stochastic map from CO to C*. In order to obtain a return map it is necessary to have 
a map from Z* to Co. This map involves trajectories outside the cylinder where the 
variables x, y and z are large. Since noise strengths are small it is the deterministic 
motion which completely dominates there. The map is contracting and we also know 
that in the absence of noise the point in Al  with 6 = 0 and z(0) = 0 is on a homoclinic 
orbit. The simplest map from Z' to Zo which satisfies these requirements is 

with 0 < p < 1 .  Putting (141, (15 )  and (18) together we have finally the map 

e' = pro exp(ag)  cos(e + pg)  + E ; &  

z' = pro exp(ag)  sin( e + pg) + tz;i2 (19) 

where 
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and E ; ,  E ;  and E :  are noise strengths. It will turn out to be interesting to study the 
consequences of this map even when a is non-negative. 

We will now turn to the stochastic Lorenz system and proceed very much in the 
same spirit. Near the origin (!)=( -g -f 0 -b .")it)+("%) z ~ 3 5 3  

and a, r and b are the standard Lorenz parameters [5,13]. The eigenvalues A , ,  A 2  and 
h3 of the matrix in (20) are given by 

Clearly 

By defining the variables 

we have 

It is convenient in this case to take a box around the origin (as shown in figure 2)  
rather than a cylinder. 

Figure 2. The box used in the Shilnikov construction. 
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The region E lies in the plane z = C3, D' in a, = -C ,  and D in a1 = C , .  The map 
from E to E can be found using arguments analogous to those given earlier. We will 
outline the main steps. a, satisfies an equation exactly similar to (3), and from this 
the stochastic time necessary to go from E to D can be found. Hence for the map 
E + D, D' we have 

where V I =  - A 3 / A l .  
In order to obtain a return map we write the map D+ E as 

(Cl ,  a 2 9  z )+  M a 2 9  z), g r ( a 2 ,  z ) ,  C3) 
where fr and g ,  are (differentiable) functions of a2 and z. Moreover from the Lorenz 
symmetry the map D' +. E is given by 

(--Cl, a 2 9  z ) +  (-fr(-a2, z ) ,  - g r ( - a 2 ,  z ) ,  C3). (26) 

On composing these maps, the map from E to E is found to have the form 

n,+sgn(aI)[A'+B'C3( ' '  a11 cl + E11511 ) " ' ] + E ; &  

with 

A' =L(O, 0) 

B ' =  af,(0,0)/az. 

and 

Just as in the purely deterministic case [5] it is the fact that ( - A 2 / A 1 )  > 1 and ( - A 3 / A 1 )  < 
1 that allows the stochastic map to be one dimensional. Compared to the stochastic 
logistic map [9] for a real variable x, 

(28) 

(where is a Gaussian random variable with zero mean and unit variance) stochastic 
Shilnikov maps look very unusual. The analytic methods used in previous studies [9] 
do not apply owing to the multiplicative nature of the noise and also the non-analytic 
nature of the functions that appear in the maps. 

Xn+i = AX,(% - I ) +  E t ,  

3. The stochastic maps 

The (e, z )  map (of (19)) is defined essentially by three parameters a, /3 and h but only 
their ratios are important. We have chosen to fix A and vary the other two. A is taken 
to be 1 and so a is constrained to be between 1 and -1. /3 can in principle be freely 
chosen. It is first useful to find the behaviour in the absence of noise. 

The attracting sets of the map all seem to lie on a spiral whose pitch depends on 
P/a. Large values of the ratio give a tightly wound spiral. In the limiting case of 
a = 0 the spiral degenerates into a circle. 

For some parameter values we have found more than one attractor, each with its 
separate basin of attraction. There are, however, some general characteristics. For 
low /3 values a fixed point is, in general, found. Larger values of p give chaotic 
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chaos on a parabolic attractor. Figure 3(b) shows the case of a =-0.4 and p =  
2.607 5063, which is near the accumulation point of the period doubling cascade. If 
p is raised to 3 the chaos is fully developed and we find the parabolic attractor of 
figure 3( c), which presumably has further structure which is difficult to see numerically. 
The parabola splits into two parallel leaves in the right-hand part of the figure. The 
separation of the leaves increases the higher p is raised above the threshold for chaos. 
For yet larger p the trajectory moves on a spiral attractor. Figure 3(d)  shows 400 
iterations for /3 = 5.0 and a = -0.4. 

In general, if p is reduced in small steps, chaotic behaviour on the spiral attractor 
is found to coexist with other non-chaotic behaviour. At sufficiently low p the attractor 
is only metastable and trajectories are recaptured by the fixed point. In one case 
( a  = -0.8) a third attractor is found. This undergoes a period doubling sequence to 
chaos on a parabola, but chaos occurs for p values where the main sequence is still 
showing fixed point behaviour. Figures 3(e) and (f) are all for CY = -0.8 and p = 3.0 
and show the spiral attractor and parabolic strange attractor which coexist with a fixed 
point. 

The parabolic attractors develop from period doubling sequences and we have 
found one case where a spiral attractor arises by intermittency. It is not clear if this 
is generally true, as the picture is complicated in the regions of coexistence of attractors 
by the possibility of collisions between attractors (i.e. crises [ 141 of chaos) as well as 
more gradual transformations. It is clear that the full bifurcation diagram will be 
complex. 

We will now examine whether the stochastic terms, which we have so far suppressed, 
give rise to behaviour different from that of the simple additive noise terms that have 
generally been studied. The behaviour of the logistic map with an additive stochastic 
term has indicated that at the threshold for chaos universal scaling behaviour with the 
strength of the noise is found. The (single) Lyapounov exponent depends on the size 
of the noise terms through a simple power law behaviour. 

The ( 6  - z )  map contains examples of two of the generic routes to chaos. One is 
the period doubling route (which of course, is also that shown by the logistic map 
[ 151). For example, the parameter values a = -0.4, p = 2.607 5063 and A = 1.0 lie near 
the end of the period doubling cascade and give a Lyapounov exponent of -5  x 
The three different noise terms have similar effects in that the Lyapounov exponent A 
scales as 

A Cc ( ~ 1 ) " ~ ~  i = 1 , 2 , 3  (29) 

at the onset of chaos when the ith noise term is present. This value is consistent with 
the value found in [16] and suggests that the effect of noise on the period doubling 
route to chaos is indeed governed by universal exponents even though here the noise 
enters the map in a completely different form from that in (28). 

We have also studied an example of intermittent chaos [17] which occurs for 
a = 0.2, p = 1.507 437 93 and A = 1.0. In the absence of noise the exponent is -6 x 
The behaviour when noise is present is rather different from that in (29). We find that 
the exponents obey a scaling law of the form 

A a ( E  ;>0.s6 i = l , 2  (30) 

and 
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for small noise levels. Whereas (30) is a good description of our numerical results, 
(31 )  needs to be treated with some caution. The scaling law of (30) is valid over three 
orders of magnitude of ( i  = 1,2)  but (31 )  is valid only for two orders of magnitude 
of E ~ ,  Since there has been a tendency to think that any type of noise will give similar 
behaviour owing to the non-linearity in the deterministic evolution (and resultant 
mixing qualities of the flow), the different behaviour found is surprising. 

The map of (25) which is rather closely related to the Lorenz model shows two 
routes to chaos depending on the sign of v ( - 1 -  v’) in the purely deterministic case. 
In fact, it has been argued [ 181 that the deterministic map represents, at least qualita- 
tively, the dynamics of systems more general than the Lorenz model and  the main 
requirements for a finite set of coupled non-linear multi-parameter ordinary differential 
equations are that 

(i) there is a fixed point for which the real parts of the eigenvalues of its stability 
matrix can be ordered and the largest real part corresponds to a purely positive 
eigenvalue f i ,  while the eigenvalue, f i 2 ,  with the next largest real part is a negative 
number, 

(ii) a set of coordinates can be chosen so that the fixed point is at the origin and 
there is an inversion symmetry with respect to the subspace spanned by the eigenvectors 
associated with f i ,  and i2, 

(iii) a homoclinic orbit exists. 
For the Lorenz model 

2b 
v = l -  

-U - 1 + [ ( U  - 1)2+4ar]1’2 

and hence v is positive. If the saddle point is such that Ih*,/h*,l> 1 ,  then v < O .  From 
standard arguments it can be shown [ 181 that for v < 0 there is a period doubling route 
[ 191 to chaos while for v > 0 we have a tangent bifurcation to Lorenz type chaos. If 
we regard the Lyapounov exponent as an order parameter, the case v > 0 corresponds 
to a first-order transition and the case v < 0 to a second-order one. For a first-order 
transition there is no scaling of A at the transition point to chaos. At the transition A 
jumps to a positive value and in the regime of fully developed chaos A is found to be 
insensitive to noise (for noise strengths up  to and averaging over lo6 iterations). 
Hence we shall concentrate on the case v < O .  It is convenient to rescale variables 
such that the map in (25) has the form 

a l+sgn(a l ) ( - l  + B(/Ia,I+~,~11-”+’))+a2~2 (33) 

where B, and u2 are parameters. It is for certain positive B (B, say) that we have 
an  accumulation point for period doubling sequences. We investigate v = -$, -; and 
- 1 .  The respective Bc are B,  = 1.209 513,  1.295 509, 1.401 155. At Bc 

A for v = -4 (34) 

K ( U i ) 0 . 3 5 7  for v = -t (35)  

a ( u ~ ) ~ . ~ ~  for v = - 1 .  (36) 

Equation (36) is consistent with (29) and the standard logistic map result. As noted 
by Arneodo et a1 [5]  in the deterministic case the continuous map associated with (33 )  
(by removing the factor sgn (a l ) )  has the same derivative (up  to a sign) as the 
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discontinuous map whose derivative is positive and this holds also for the higher-order 
derivatives. This leads to close correspondences in the bifurcation structures. For 
Y = -1 the logistic map is the associated continuous map. From the theory of continuous 
maps [19] it is known that one of the factors determining the universality class of the 
maps is the behaviour near the origin. Hence it is not surprising that (34)-(36) show 
that the scaling of the Lyapounov exponent changes with Y. 

These examples of stochastic Shilnikov maps have been shown to exhibit a rich 
variety of behaviour. They represent arguably a more natural introduction of noise 
into maps for dynamical systems. They show period doubling routes to chaos, intermit- 
tency, coexistent attractors, second- and first-order transitions to chaos, hysteresis 
effects and so on. It is possible that they will be helpful in obtaining a deeper 
understanding of quantum chaos in dissipative systems [20], equations for which can 
often be represented in a form similar to that of (1) and (20) in a space of suitable 
dimensionality. 
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